NMC SAMPLE PROBLEMS: GRADE 11

- **1**. Which one of the following functions has different domain?
 - (a) $\frac{x+1}{x-1}$ (b) $\frac{(x+1)\sqrt{x^2+1}}{(x-1)\sqrt{x^2+1}}$ (c) $\frac{(x+1)(x+2)}{(x-1)(x+2)}$ (d) $\frac{(x+1)(x^2+2)}{(x-1)(x^2+2)}$ (e) $\frac{(x+1)(x^3+1)}{x-1}$ Answer: (c)

2. Find the equation of the circle centered at (1, -2) passing through the point (-2, 2).

- (a) $(x-1)^2 + (y+2)^2 = 5$ (b) $(x-1)^2 + (y+2)^2 = 25$ (c) $(x+1)^2 + (y-2)^2 = 5$ (d) $(x+1)^2 + (y-2)^2 = 25$
- (c) $(x+1)^2 + (y-2)^2 = 5$ (d) $(x+1)^2 + (y-2)^2 = 5$
- (e) $(x-2)^2 + (y+2)^2 = 5$

3. What is the solution set of the following equation: $\ln(x) + \ln(x+2) = \ln(x+6)$? (a) {1} (b) {2} (c) {2,-3} (d) {2,3} (e) {1,2} *Answer:* (b)

4. Find the polar coordinates for the point with rectangular coordinates (0, -2). (a) (2, 0) (b) $(2, \frac{\pi}{2})$ (c) $(2, \pi)$ (d) $(2, \frac{3\pi}{2})$ (e) $(2, 2\pi)$ *Answer:* (d)

5. When $\sin \theta = \frac{1}{7}$ and $\tan \theta > 0$, find $\sin(\theta + \frac{\pi}{2})$. (a) $-\frac{1}{7}$ (b) $\frac{1}{7}$ (c) $-\frac{4\sqrt{3}}{7}$ (d) $\frac{4\sqrt{3}}{7}$ (e) $\frac{6}{7}$ *Answer:* (d)

6. If $\sin x - \cos x = \frac{3}{5}$, then what is the value of $\sin^3 x - \cos^3 x$? (a) $\frac{4}{5}$ (b) $\frac{27}{125}$ (c) $\frac{33}{125}$ (d) $\frac{66}{125}$ (e) $\frac{99}{125}$ *Answer:* (e)

- 7. There are 3 red balls, 2 blue balls, and 3 white balls in a bag. If James takes out three balls at once, then what is the probability that he takes out at least one red ball?
 - (a) 1 (b) $\frac{27}{28}$ (c) $\frac{25}{28}$ (d) $\frac{23}{28}$ (e) $\frac{21}{28}$ Answer: (d)

Answer: (b)

8.	Let x and y be real numbers satisfying the following two conditions:								
		x + y = 1	1 and $(x^2 + y^2)(x^2 + y^2)(x^2 + y^2)$	$x^3 + y^3) = 35$					
	Find $x^2 + y^2$.								
	(a) 3	(b) 4	(c) 5	(d) 6	(e) 7				
					Answer: (c)				
9.	Let a_7, a_6, \dots, a_1 and a_0 be the coefficients of the expansion of the expression $(2x-3)^7$, that is								
		$(2x-3)^{2}$	$a_7 = a_7 x^7 + a_6 x^6 + \cdots$	$\cdots + a_1 x + a_0$					
	Find the sum $a_7 + a_6 + \dots + a_1 + a_0$.								
	(a) -1	(b) 0	(c) 1	(d) 7	(e) 2^7				
					Answer: (a)				
10.	Find the sum $3^{-1} + 3^{-2} + \dots + 3^{-8}$. (Hint: $3^8 = 6561$)								
	(a) $\frac{3270}{6561}$	(b) $\frac{3280}{6561}$	(c) $\frac{3290}{6561}$	(d) $\frac{3300}{6561}$	(e) $\frac{3310}{6561}$				
					Answer: (b)				
11.	What is the remainder when $1! + 2! + 3! + \cdots + 2012!$ is divided by 7?								
	(a) 3	(b) 4	(c) 5	(d) 6	(e) 0				
					Answer: (c)				
12 .	How many five digit numbers contain the digit pattern "03" exactly once?								
	(a) 2673	(b) 2700	(c) 2691	(d) 2682	(e) 2704				
					Answer: (c)				
13.	Let a , b and a $x^5 - 2x^4 - 3x^3$	c be three roots of ${}^3-4x^2+x+1.$	$x^3 - 2x^2 - 3x - 4$	= 0. Find $p(a) + p$	(b) + p(c), where $p(x) =$				
	(a) 5	(b) 3	(c) 1	(d) -1	(e) -3				
					Answer: (a)				
14.	Find the area of the following triangle.								
			5						
			30°						
			6	<u>\</u>					
	(a) 6	(b) 6.5	(c) 7	(d) 7.5	(e) 8				
					Answer: (d)				

15. Suppose a, b, c and d are integers, and $x = \sqrt{2 + \sqrt{3}}$ is a solution of the equation $2x^4 + ax^3 + bx^2 + cx + d = 0$. What is the sum a + b + c + d?

(a) 3 (b) -6 (c) 9 (d) -12 (e) 15 Answer: (b)

16. What is the remainder when $x^3 - 2x + 1$ is divided by 2x - 4? (a) $x^3 - 4x + 5$ (b) x + 1 (c) $\frac{5}{2}$ (d) 5 (e) 10 *Answer:* (d)

17. Find the equation of the straight line which passes through the point (2,3) and is perpendicular to 2x + 3y + 1 = 0.

(a) 2x + 3y - 13 = 0(b) 2x - 3y + 5 = 0(c) 3x + 2y + 12 = 0(d) 3x - 2y = 0(e) 3x + 2y = 0

18. Find the vertex point of the parabola $x = y^2 + 4y + 7$.
 (a) (3,2) (b) (3,-2) (c) (-3,2) (d) (-3,-2) (e) (2,3)

 Answer: (b)

19. Find the value of the product: $\begin{pmatrix} 1 - \frac{1}{2^2} \end{pmatrix} \begin{pmatrix} 1 - \frac{1}{3^2} \end{pmatrix} \begin{pmatrix} 1 - \frac{1}{4^2} \end{pmatrix} \cdots \begin{pmatrix} 1 - \frac{1}{2008^2} \end{pmatrix}$ (a) $\frac{2009}{4016}$ (b) $\frac{4016}{2009}$ (c) $\frac{2009}{8032}$ (d) $\frac{8032}{2009}$ (e) $\frac{12048}{2009}$ Answer: (a)

20. How many real number solutions of the equation $e^x + x^2 - 2 = 0$?

(a) 0 (none)
(b) 1 (one solution)
(c) 2 (two solutions)
(d) 3 (three solutions)
(e) 6 (six solutions)

Answer: (c)

- **21**. A ball is thrown vertically upward and its height after t seconds is $s = 120 + 64t 16t^2$ feet. Find the maximum height reached by the ball.
 - (a) 184 feet (b) 168 feet (c) 136 feet (d) 120 feet (e) 64 feet Answer: (a) Answer: (a)

22. The function $f(x) = \frac{2x+1}{x-3}$ has one horizontal asymptote, say y = a, and one vertical asymptote, say x = b. Find a + b.

(a) -1 (b) 0 (c) 1 (d) 3 (e) 5

Answer: (d)

23 .	If $16^{x+1} = 3$, then which of the following is 2^{4x+2} ?						
	(a) $\frac{3}{4}$	(b) $\frac{3}{2}$	(c) 3	(d) 6	(e) 12 Answer: (a)		
2 4.							
	(a) $-\frac{7}{9}$	(b) $-\frac{2\sqrt{2}}{3}$	(c) $-\frac{1}{3}$	(d) $\frac{1}{3}$	(e) $\frac{2\sqrt{2}}{3}$ Answer: (b)		
25 . If $\sin x + \cos x = \frac{1}{2}$, then what is the value of $\sin^3 x + \cos^3 x$?							
	(a) $\frac{2\sqrt{2}}{3}$	(b) $-\frac{2\sqrt{2}}{3}$	(c) $\frac{7}{9}$	(d) $\frac{13}{27}$	(e) $-\frac{13}{27}$ Answer: (d)		
26 .	Evaluate log _{1/27} 95	?					
	(a) -2	(b) $-\frac{4}{3}$	(c) $-\frac{2}{3}$	(d) $\frac{2}{3}$	(e) $\frac{4}{3}$ Answer: (c)		
27.	Find the remainde	er when $1 + 3 + 5 + 5$	$\dots + 2007 + 2009$ is	divided by 2009.			
	(a) 1507	(b) 1307	(c) 1005	(d) 503	(e) 0 Answer: (a)		
28. Find the sum of the maximum and minimum values of the expression $-2\sin(2x + \frac{1}{2})$					$(2x + \pi) + 5.$		
	(a) 3	(b) 7	(c) 10	(d) 13	(e) 15 <i>Answer:</i> (c)		
29.	Evaluate the follow	wing: $\left(\frac{\sqrt{2}}{1+i}\right)^{2009}$					
	(a) 0	(b) 1	(c) $\frac{\sqrt{2}(1-i)}{2}$	(d) $\frac{\sqrt{2}(1+i)}{2}$	(e) $-\frac{\sqrt{2}(1+i)}{2}$ Answer: (c)		
30 .	Find the maximum	n value of $\sin x - 2c$	$\cos x + 3.$				
	(a) 3	(b) 2	(c) $3 + \sqrt{5}$	(d) 6	(e) $3 - \sqrt{5}$ Answer: (c)		
31 .	In the expansion of	of $(x^2 - 2y)^{10}$, what	is the coefficient of	$x^{14}y^{3}?$			

(a) -960 (b) 480 (c) -240 (d) 1 (e) 0

Answer: (a)

32. Find the solution set of the equation $(e^{x+1})^{x+2} = 1$. (a) $\{1,2\}$ (b) $\{-1,-2\}$ (c) $\{\frac{3}{2}\}$ (d) $\{-\frac{3}{2}\}$ (e) $\{\}$ (No solution) *Answer:* (b)

33. A committee composed of Alice, Mark, Ben, Connie and Francisco is about to select three representatives randomly. What is the probability that Connie is excluded from the selection?

(a) $\frac{4}{5}$ (b) $\frac{3}{5}$ (c) $\frac{2}{5}$ (d) $\frac{1}{5}$ (e) 0 Answer: (c)

34. Find the sum of all integers between 1 to 100 (inclusive) that are not multiples of 3.
(a) 3367 (b) 3368 (c) 3369 (d) 3370 (e) 3375
Answer: (a)

35. Evaluate the following:

(a) -10 (b) -5 (c) 0 (d) 5 (e) 10*Answer:* (a)

36. How many one-to-one functions are there from the set $X = \{a, b, c\}$ to the set $Y = \{1, 2, 3, 4\}$? (a) 9 (b) 16 (c) 24 (d) 27 (e) 64 *Answer:* (c)

37. Let z = 2 + bi, where b is a positive real number and $i^2 = -1$. If the imaginary part of z^2 and z^3 are equal, then what is b?

(a) 1 (b) $\sqrt{2}$ (c) 2 (d) $2\sqrt{2}$ (e) 4

38. What is the average of the numbers in the set {2, 6, 10, 14, ..., 38}?
(a) 22
(b) 21
(c) 20
(d) 19
(e) 18
Answer: (c)

39. The rational function $f(x) = \frac{ax+2}{x+b}$ has the inverse function $f^{-1}(x) = \frac{ax+2}{x+b}$. Find a + b. (a) -2 (b) $-\frac{1}{2}$ (c) 0 (d) $\frac{1}{2}$ (e) 2

Answer: (c)

Answer: (d)

6 of ??

- **40**. What is the area of a triangle when its three sides are 3, 6, and 7?
 - (a) 4 (c) $4\sqrt{3}$ (d) $4\sqrt{5}$ (e) $5\sqrt{3}$ (b) 5 Answer: (d)

An employee of a computer store is paid a base salary \$1,500 a month plus a 2% commission on all **41**. sales over \$4,000 during the month. How much must the employee sell in a month to earn a total of \$2,000 for the month?

- (a) \$25,000 (b) \$26,000 (c) \$27,000 (d) \$28,000 (e) \$29,000 Answer: (e)
- **42**. A speedboat takes 1 hour longer to go 16 miles up a river than to return. If the boat cruises at 12 miles per hour in still water, what is the rate of the current?

(a) 2 miles/hour (b) 4 miles/hour (c) 5 miles/hour (d) 6 miles/hour (e) 8 miles/hour Answer: (b)

- The domain of the function **43**. $f(x) = \log_{2010} \left(\log_{2009} \left(\log_{2008} \left(\log_{2007} x \right) \right) \right)$ is $\{x | x > c\}$. What is the value of c? (e) $2007^{2008^{2009}}$ (c) 2007^{2008} (d) 2009^{2010} (a) 0 (b) 1 Answer: (c) **44**. Find the sum of all solutions of the equation |x - 1| = |2x|. (b) $-\frac{2}{3}$ (c) $-\frac{1}{3}$ (a) -1(d) 0 (e) $\frac{1}{3}$ Answer: (b) **45**. Which one of the following is the greatest? (a) 7^{10} (c) 5^{30} (d) 4^{40} (e) 3^{50} (b) 6^{20} Answer: (d) Suppose that m is an integer and $2 + \sqrt{3}$ is a solution of the equation $x^3 - mx^2 + mx - 1 = 0$. Find **46**. m. (a) 5 (b) 4 (c) 3 (d) 2 (e) 1 Answer: (a) Harry performed the calculation: $5 \times 7 = 21$. It turns out Harry's calculation is correct in base b **47**. (b > 7). Find the value b.
 - (a) 13 (b) 14 (c) 15 (d) 16 (e) 17 Answer: (e)

- **48**. Suppose that f(x) is a polynomial with integer coefficients, having 2006 and 2022 as zeros. Which of the following could possibly be the value of f(2011)?
 - (a) 35 (b) 77 (c) 101 (d) 110 (e) 111 Answer: (d)
- **49**. A polynomial $f(x) = x^3 + ax^2 + bx + c$ satisfies f(1) = 1, f(2) = 2 and f(3) = 3. What is the remainder when f(x) is divided by x + 1?
 - (a) -25 (b) -1 (c) 0 (d) 1 (e) 25

Answer: (a)

50. Evaluate
$$\frac{2012^4 - 2 \cdot 2012^2 - 3 \cdot 2012 - 2}{2012^3 - 2012^2 - 2012 - 2}.$$
(a) 2011 (b) 2012 (c) 2013 (d) 2014 (e) 2015
Answer: (c)

- **51**. Find the remainder when 2012^{2012} is divided by 11. Answer: 1
- **52.** If $\log_5 2 = a$, then what is $\log_4 25$ in terms of a? Answer: $\frac{1}{a}$
- **53**. Let *a* and *b* be integers which satisfy $\sqrt{7-4\sqrt{3}} = a + b\sqrt{3}$. Find a + b. Answer: 1