NMC Sample Problems: Grade 11

1. Which one of the following functions has different domain?
(a) $\frac{x+1}{x-1}$
(b) $\frac{(x+1) \sqrt{x^{2}+1}}{(x-1) \sqrt{x^{2}+1}}$
(c) $\frac{(x+1)(x+2)}{(x-1)(x+2)}$
(d) $\frac{(x+1)\left(x^{2}+2\right)}{(x-1)\left(x^{2}+2\right)}$
(e) $\frac{(x+1)\left(x^{3}+1\right)}{x-1}$

Answer: (c)
2. Find the equation of the circle centered at $(1,-2)$ passing through the point $(-2,2)$.
(a) $(x-1)^{2}+(y+2)^{2}=5$
(b) $(x-1)^{2}+(y+2)^{2}=25$
(c) $(x+1)^{2}+(y-2)^{2}=5$
(d) $(x+1)^{2}+(y-2)^{2}=25$
(e) $(x-2)^{2}+(y+2)^{2}=5$

Answer: (b)
3. What is the solution set of the following equation: $\ln (x)+\ln (x+2)=\ln (x+6)$?
(a) $\{1\}$
(b) $\{2\}$
(c) $\{2,-3\}$
(d) $\{2,3\}$
(e) $\{1,2\}$

Answer: (b)
4. Find the polar coordinates for the point with rectangular coordinates $(0,-2)$.
(a) $(2,0)$
(b) $\left(2, \frac{\pi}{2}\right)$
(c) $(2, \pi)$
(d) $\left(2, \frac{3 \pi}{2}\right)$
(e) $(2,2 \pi)$

Answer: (d)
5. When $\sin \theta=\frac{1}{7}$ and $\tan \theta>0$, find $\sin \left(\theta+\frac{\pi}{2}\right)$.
(a) $-\frac{1}{7}$
(b) $\frac{1}{7}$
(c) $-\frac{4 \sqrt{3}}{7}$
(d) $\frac{4 \sqrt{3}}{7}$
(e) $\frac{6}{7}$

Answer: (d)
6. If $\sin x-\cos x=\frac{3}{5}$, then what is the value of $\sin ^{3} x-\cos ^{3} x$?
(a) $\frac{4}{5}$
(b) $\frac{27}{125}$
(c) $\frac{33}{125}$
(d) $\frac{66}{125}$
(e) $\frac{99}{125}$

Answer: (e)
7. There are 3 red balls, 2 blue balls, and 3 white balls in a bag. If James takes out three balls at once, then what is the probability that he takes out at least one red ball?
(a) 1
(b) $\frac{27}{28}$
(c) $\frac{25}{28}$
(d) $\frac{23}{28}$
(e) $\frac{21}{28}$

Answer: (d)
8. Let x and y be real numbers satisfying the following two conditions:

$$
x+y=1 \quad \text { and } \quad\left(x^{2}+y^{2}\right)\left(x^{3}+y^{3}\right)=35
$$

Find $x^{2}+y^{2}$.
(a) 3
(b) 4
(c) 5
(d) 6
(e) 7

Answer: (c)
9. Let $a_{7}, a_{6}, \cdots, a_{1}$ and a_{0} be the coefficients of the expansion of the expression $(2 x-3)^{7}$, that is

$$
(2 x-3)^{7}=a_{7} x^{7}+a_{6} x^{6}+\cdots+a_{1} x+a_{0}
$$

Find the sum $a_{7}+a_{6}+\cdots+a_{1}+a_{0}$.
(a) -1
(b) 0
(c) 1
(d) 7
(e) 2^{7}

Answer: (a)
10. Find the sum $3^{-1}+3^{-2}+\cdots+3^{-8}$. (Hint: $3^{8}=6561$)
(a) $\frac{3270}{6561}$
(b) $\frac{3280}{6561}$
(c) $\frac{3290}{6561}$
(d) $\frac{3300}{6561}$
(e) $\frac{3310}{6561}$

Answer: (b)
11. What is the remainder when $1!+2!+3!+\cdots+2012$! is divided by 7 ?
(a) 3
(b) 4
(c) 5
(d) 6
(e) 0

Answer: (c)
12. How many five digit numbers contain the digit pattern " 03 " exactly once?
(a) 2673
(b) 2700
(c) 2691
(d) 2682
(e) 2704

Answer: (c)
13. Let a, b and c be three roots of $x^{3}-2 x^{2}-3 x-4=0$. Find $p(a)+p(b)+p(c)$, where $p(x)=$ $x^{5}-2 x^{4}-3 x^{3}-4 x^{2}+x+1$.
(a) 5
(b) 3
(c) 1
(d) -1
(e) -3

Answer: (a)
14. Find the area of the following triangle.

(a) 6
(b) 6.5
(c) 7
(d) 7.5
(e) 8

Answer: (d)
15. Suppose a, b, c and d are integers, and $x=\sqrt{2+\sqrt{3}}$ is a solution of the equation $2 x^{4}+a x^{3}+$ $b x^{2}+c x+d=0$. What is the sum $a+b+c+d$?
(a) 3
(b) -6
(c) 9
(d) -12
(e) 15

Answer: (b)
16. What is the remainder when $x^{3}-2 x+1$ is divided by $2 x-4$?
(a) $x^{3}-4 x+5$
(b) $x+1$
(c) $\frac{5}{2}$
(d) 5
(e) 10

Answer: (d)
17. Find the equation of the straight line which passes through the point $(2,3)$ and is perpendicular to $2 x+3 y+1=0$.
(a) $2 x+3 y-13=0$
(b) $2 x-3 y+5=0$
(c) $3 x+2 y+12=0$
(d) $3 x-2 y=0$
(e) $3 x+2 y=0$

Answer: (d)
18. Find the vertex point of the parabola $x=y^{2}+4 y+7$.
(a) $(3,2)$
(b) $(3,-2)$
(c) $(-3,2)$
(d) $(-3,-2)$
(e) $(2,3)$

Answer: (b)
19. Find the value of the product:

$$
\left(1-\frac{1}{2^{2}}\right)\left(1-\frac{1}{3^{2}}\right)\left(1-\frac{1}{4^{2}}\right) \cdots\left(1-\frac{1}{2008^{2}}\right)
$$

(a) $\frac{2009}{4016}$
(b) $\frac{4016}{2009}$
(c) $\frac{2009}{8032}$
(d) $\frac{8032}{2009}$
(e) $\frac{12048}{2009}$

Answer: (a)
20. How many real number solutions of the equation $e^{x}+x^{2}-2=0$?
(a) 0 (none)
(b) 1 (one solution)
(c) 2 (two solutions)
(d) 3 (three solutions)
(e) 6 (six solutions)

Answer: (c)
21. A ball is thrown vertically upward and its height after t seconds is $s=120+64 t-16 t^{2}$ feet. Find the maximum height reached by the ball.
(a) 184 feet
(b) 168 feet
(c) 136 feet
(d) 120 feet
(e) 64 feet

Answer: (a)
22. The function $f(x)=\frac{2 x+1}{x-3}$ has one horizontal asymptote, say $y=a$, and one vertical asymptote, say $x=b$. Find $a+b$.
(a) -1
(b) 0
(c) 1
(d) 3
(e) 5
23. If $16^{x+1}=3$, then which of the following is $2^{4 x+2}$?
(a) $\frac{3}{4}$
(b) $\frac{3}{2}$
(c) 3
(d) 6
(e) 12

Answer: (a)
24. If $\csc (x)=3$ and $90^{\circ}<x<180^{\circ}$, then what is $\cos (x)$?
(a) $-\frac{7}{9}$
(b) $-\frac{2 \sqrt{2}}{3}$
(c) $-\frac{1}{3}$
(d) $\frac{1}{3}$
(e) $\frac{2 \sqrt{2}}{3}$

Answer: (b)
25. If $\sin x+\cos x=\frac{1}{3}$, then what is the value of $\sin ^{3} x+\cos ^{3} x$?
(a) $\frac{2 \sqrt{2}}{3}$
(b) $-\frac{2 \sqrt{2}}{3}$
(c) $\frac{7}{9}$
(d) $\frac{13}{27}$
(e) $-\frac{13}{27}$

Answer: (d)
26. Evaluate $\log _{1 / 27} 9$?
(a) -2
(b) $-\frac{4}{3}$
(c) $-\frac{2}{3}$
(d) $\frac{2}{3}$
(e) $\frac{4}{3}$

Answer: (c)
27. Find the remainder when $1+3+5+\cdots+2007+2009$ is divided by 2009 .
(a) 1507
(b) 1307
(c) 1005
(d) 503
(e) 0

Answer: (a)
28. Find the sum of the maximum and minimum values of the expression $-2 \sin (2 x+\pi)+5$.
(a) 3
(b) 7
(c) 10
(d) 13
(e) 15

Answer: (c)
29. Evaluate the following: $\left(\frac{\sqrt{2}}{1+i}\right)^{2009}$
(a) 0
(b) 1
(c) $\frac{\sqrt{2}(1-i)}{2}$
(d) $\frac{\sqrt{2}(1+i)}{2}$
(e) $-\frac{\sqrt{2}(1+i)}{2}$

Answer: (c)
30. Find the maximum value of $\sin x-2 \cos x+3$.
(a) 3
(b) 2
(c) $3+\sqrt{5}$
(d) 6
(e) $3-\sqrt{5}$
Answer: (c)
31. In the expansion of $\left(x^{2}-2 y\right)^{10}$, what is the coefficient of $x^{14} y^{3}$?
(a) -960
(b) 480
(c) -240
(d) 1
(e) 0

Answer: (a)
32. Find the solution set of the equation $\left(e^{x+1}\right)^{x+2}=1$.
(a) $\{1,2\}$
(b) $\{-1,-2\}$
(c) $\left\{\frac{3}{2}\right\}$
(d) $\left\{-\frac{3}{2}\right\}$
(e) $\}$ (No solution)
Answer: (b)
33. A committee composed of Alice, Mark, Ben, Connie and Francisco is about to select three representatives randomly. What is the probability that Connie is excluded from the selection?
(a) $\frac{4}{5}$
(b) $\frac{3}{5}$
(c) $\frac{2}{5}$
(d) $\frac{1}{5}$
(e) 0

Answer: (c)
34. Find the sum of all integers between 1 to 100 (inclusive) that are not multiples of 3 .
(a) 3367
(b) 3368
(c) 3369
(d) 3370
(e) 3375

Answer: (a)
35. Evaluate the following:

$$
\log _{2}\left(\frac{1}{2}\right)+\log _{2}\left(\frac{2}{3}\right)+\log _{2}\left(\frac{3}{4}\right)+\cdots+\log _{2}\left(\frac{1023}{1024}\right)
$$

(a) -10
(b) -5
(c) 0
(d) 5
(e) 10

Answer: (a)
36. How many one-to-one functions are there from the set $X=\{a, b, c\}$ to the set $Y=\{1,2,3,4\}$?
(a) 9
(b) 16
(c) 24
(d) 27
(e) 64

Answer: (c)
37. Let $z=2+b i$, where b is a positive real number and $i^{2}=-1$. If the imaginary part of z^{2} and z^{3} are equal, then what is b ?
(a) 1
(b) $\sqrt{2}$
(c) 2
(d) $2 \sqrt{2}$
(e) 4

Answer: (d)
38. What is the average of the numbers in the set $\{2,6,10,14, \cdots, 38\}$?
(a) 22
(b) 21
(c) 20
(d) 19
(e) 18

Answer: (c)
39. The rational function $f(x)=\frac{a x+2}{x+b}$ has the inverse function $f^{-1}(x)=\frac{a x+2}{x+b}$. Find $a+b$.
(a) -2
(b) $-\frac{1}{2}$
(c) 0
(d) $\frac{1}{2}$
(e) 2

Answer: (c)
40. What is the area of a triangle when its three sides are 3,6 , and 7 ?
(a) 4
(b) 5
(c) $4 \sqrt{3}$
(d) $4 \sqrt{5}$
(e) $5 \sqrt{3}$

Answer: (d)
41. An employee of a computer store is paid a base salary $\$ 1,500$ a month plus a 2% commission on all sales over $\$ 4,000$ during the month. How much must the employee sell in a month to earn a total of $\$ 2,000$ for the month?
(a) $\$ 25,000$
(b) $\$ 26,000$
(c) $\$ 27,000$
(d) $\$ 28,000$
(e) $\$ 29,000$

Answer: (e)
42. A speedboat takes 1 hour longer to go 16 miles up a river than to return. If the boat cruises at 12 miles per hour in still water, what is the rate of the current?
(a) 2 miles/hour
(b) 4 miles/hour
(c) 5 miles/hour
(d) 6 miles/hour
(e) 8 miles/hour

Answer: (b)
43. The domain of the function

$$
f(x)=\log _{2010}\left(\log _{2009}\left(\log _{2008}\left(\log _{2007} x\right)\right)\right)
$$

is $\{x \mid x>c\}$. What is the value of c ?
(a) 0
(b) 1
(c) 2007^{2008}
(d) 2009^{2010}
(e) $2007^{2008^{2009}}$
Answer: (c)
44. Find the sum of all solutions of the equation $|x-1|=|2 x|$.
(a) -1
(b) $-\frac{2}{3}$
(c) $-\frac{1}{3}$
(d) 0
(e) $\frac{1}{3}$

Answer: (b)
45. Which one of the following is the greatest?
(a) 7^{10}
(b) 6^{20}
(c) 5^{30}
(d) 4^{40}
(e) 3^{50}

Answer: (d)
46. Suppose that m is an integer and $2+\sqrt{3}$ is a solution of the equation $x^{3}-m x^{2}+m x-1=0$. Find m.
(a) 5
(b) 4
(c) 3
(d) 2
(e) 1

Answer: (a)
47. Harry performed the calculation: $5 \times 7=21$. It turns out Harry's calculation is correct in base b $(b>7)$. Find the value b.
(a) 13
(b) 14
(c) 15
(d) 16
(e) 17

Answer: (e)
48. Suppose that $f(x)$ is a polynomial with integer coefficients, having 2006 and 2022 as zeros. Which of the following could possibly be the value of $f(2011)$?
(a) 35
(b) 77
(c) 101
(d) 110
(e) 111

Answer: (d)
49. A polynomial $f(x)=x^{3}+a x^{2}+b x+c$ satisfies $f(1)=1, f(2)=2$ and $f(3)=3$. What is the remainder when $f(x)$ is divided by $x+1$?
(a) -25
(b) -1
(c) 0
(d) 1
(e) 25

Answer: (a)
50. Evaluate $\frac{2012^{4}-2 \cdot 2012^{2}-3 \cdot 2012-2}{2012^{3}-2012^{2}-2012-2}$.
(a) 2011
(b) 2012
(c) 2013
(d) 2014
(e) 2015

Answer: (c)
51. Find the remainder when 2012^{2012} is divided by 11 .

Answer: 1
52. If $\log _{5} 2=a$, then what is $\log _{4} 25$ in terms of a ?

Answer: $\frac{1}{a}$
53. Let a and b be integers which satisfy $\sqrt{7-4 \sqrt{3}}=a+b \sqrt{3}$. Find $a+b$.

